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ABSTRACT

Aspect-based sentiment analysis (ABSA) plays an indispensable
role in web mining and retrieval system as it involves a wide range
of tasks, including aspect term extraction, opinion term extraction,
aspect sentiment classification, etc. Early works are merely appli-
cable to a part of these tasks, leading to computation-unfriendly
models and a pipeline framework. Recently, a unified framework
has been proposed to learn all these ABSA tasks in an end-to-end
fashion. Despite its versatility, its performance is still sub-optimal
since ABSA tasks depend heavily on both sentiment and syntax
knowledge, but existing task-specific knowledge integration meth-
ods are hardly applicable to such a unified framework. Therefore,
we propose a brand-new unified framework for ABSA in this work,
which incorporates both implicit sentiment knowledge and explicit
syntax knowledge to better complete all ABSA tasks. To effectively
incorporate implicit sentiment knowledge, we first design a self-
supervised pre-training procedure that is general enough to all
ABSA tasks. It consists of conjunctive words prediction (CWP) task,
sentiment-word polarity prediction (SPP) task, attribute nouns pre-
diction (ANP) task, and sentiment-oriented masked language mod-
eling (SMLM) task. Empowered by the pre-training procedure, our
framework acquires strong abilities in sentiment representation and
sentiment understanding. Meantime, considering a subtle syntax
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variation can significantly affect ABSA, we further explore a sparse
relational graph attention network (SR-GAT) to introduce explicit
aspect-oriented syntax knowledge. By combining both worlds of
knowledge, our unified model can better represent and understand
the input texts towards all ABSA tasks. Extensive experiments show
that our proposed framework achieves consistent and significant
improvements on all ABSA tasks.
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1 INTRODUCTION

Aspect-based sentiment analysis (ABSA) aims to address a wide
range of sentiment analysis tasks at a fine-grained level. Compared
to sentence-level sentiment analysis [20, 23] that focuses merely on
overall sentiment polarity, ABSA breaks a sentence into aspect terms
and opinion terms, and then discriminate the sentiment polarity
towards each aspect by considering its corresponding opinion term
(i.e., aspect sentiment classification). As an example shown in Fig-
ure 1(top), in the sentence “the place is small and cramped but food
is fantastic”, the aspect terms are “place” and “food”, their sentiment
polarities are “negative” and “positive”, and the opinion terms are
“small”, “cramped”, and “fantastic”. As ABSA captures every single
perspective towards intra-sentence sentiments, it plays an indis-
pensable role in web mining for downstream applications [1, 13],
e.g., analysis of drug reviews [9] and understanding hospitality
service [28], and has attracted increasing attention in recent years.
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The    place is   small and    cramped but    food is    fantastic .
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Figure 1: Examples of aspect terms, opinion terms, and their

sentiment polarities (top), and seven ABSA tasks (bottom).

In detail, ABSA involves seven tasks for intra-sentence fine-
grained sentiment analysis. Besides the three fundamental tasks,
i.e., aspect extraction (AE), opinion extraction (OE), and aspect
sentiment classification (ASC), it also involves their combinations
as four extra tasks. That is, aspect extraction and sentiment clas-
sification (AESC), aspect-based opinion extraction (AOE), aspect
and opinion pair extraction (AOPE), and aspect sentiment triplet
extraction (ASTE). Given the above example, these seven tasks’
targets are shown in Figure 1(bottom). In the past few years, re-
searchers have paid tremendous efforts to improve the performance
of these tasks [30, 42] through utilizing advanced representation
methods [34, 46], exploring new architectures [2, 13], or incorporat-
ing various task-specific knowledge [29, 44]. Although some works
achieve impressive performance on a particular task, they ignore
the intrinsic connection among those ABSA tasks. Besides, these
works handle each task individually or a part of them, leading to a
pipeline framework and computation-unfriendly models.

Very recently, Mao et al. [21] formatted the ABSA tasks as two
machine reading comprehension problems and jointly learned all
tasks with a shared pre-trained language model (PLM). Xu et al.
[43] exploited a sequence-to-sequence model to solve all ABSA
tasks. Despite their versatility, such a straightforward multi-task
fine-tuning manner can only achieve sub-optimal results due to
the lack of sentiment-aware knowledge and aspect-oriented syn-
tax knowledge: Firstly, different from some coarse-grained NLP
tasks, ABSA tasks depend more on fine-grained sentiment-aware
words and prior information including conjunctive words, attribute
nouns, sentiment words, and their sentiment polarities. Despite the
power of PLM in learning generic semantic representations, the
fine-grained sentiment-aware knowledge is seldom explicitly stud-
ied and exploited in the PLM, thus it is challenging and sub-optimal
if we directly fine-tune the pre-trained language models on the
ABSA tasks. Secondly, although some probing works have shown
that PLM is equipped with implicit syntax knowledge (e.g., word-
pair dependency), ABSA tasks rely more on aspect-related syntax
knowledge, where the syntax tree roots on an aspect term and en-
tails direct interactions between aspect and opinion terms [34]. The
aspect-related syntax can remarkably improve the neural model to
explicitly capture the sentiment towards the aspect.

Motivated by above, we propose a brand-new unified framework
integrated with both implicit Sentiment Knowledge and explicit
Syntax Knowledge (thus dubbed as SK2) for improving perfor-
mance on all ABSA tasks. Specifically, we design a self-supervised
pre-training procedure to effectively introduce fine-grained im-
plicit sentiment knowledge. The self-supervised pre-training pro-
cedure has four tasks – conjunctive words prediction (CWP) task,
sentiment-word polarity prediction (SPP) task, attribute nouns pre-
diction (ANP) task, and sentiment-orientedmasked languagemodel-
ing (SMLM) task – encouraging PLMs to be sentiment-aware. In con-
trast to previous task-specific sentiment pre-training [31], we keep
the pre-training tasks general enough to benefit all downstream
ABSA tasks. Empowered by the general pre-training procedure, our
unified model can acquire more strong abilities in sentiment rep-
resentation and sentiment understanding. In addition, we explore
a sparse relational graph attention network (SR-GAT) to precisely
introduce explicit aspect-oriented syntax knowledge to PLMs in fine-
tuning phase. To be specific, instead of directly using a dependency
parsing tree that has many unnecessary edges between words to
interfere with modeling relations between aspects and opinion,
we propose a sparse aspect-oriented syntactic tree. It begins with
a dependency parsing tree given a sentence and transforms the
tree into a sparse and aspect-rooted syntactic tree. Then, we apply
the SR-GAT to encode the syntactic tree structure and incorporate
the syntax encodings of graph into Transformer. Consequently, by
combining both worlds of knowledge, our unified model can better
represent and understand the input texts towards all ABSA tasks.

We evaluate the proposed SK2 on all ABSA tasks including aspect
extraction (AE), opinion extraction (OE), aspect sentiment classifi-
cation (ASC), aspect extraction and sentiment classification (AESC),
aspect-based opinion extraction (AOE), aspect and opinion pair
extraction (AOPE), and aspect sentiment triplet extraction (ASTE).
Experimental results show that our SK2 can consistently improve
the performance over all metrics on three benchmarks. Specifically,
on the AE, OE, and ASC tasks, our SK2 brings 2.89%, 1.87%, and
5.43% average absolute improvements on F1 score respectively; On
the AESC, AOE, and AOPE tasks, SK2 achieves 1.74%, 2.73%, and
2.28% average absolute improvements on F1, respectively. Mean-
while, our SK2 achieves 1.97% average absolute improvements on
the ASTE task which is the hardest among all ABSA tasks.

In summary, our main contributions are four folds: (i) We pro-
pose a brand-new unified framework that integrates both implicit
sentiment knowledge and explicit syntax knowledge to benefit all
ABSA tasks. (ii) To incorporate implicit sentiment knowledge, we
introduce four tasks in the self-supervised pre-training procedure,
which can effectively contribute to sentiment representation and
sentiment understanding. (iii) We also propose an explicit method
to integrate syntax knowledge by our sparse aspect-oriented tree
and SR-GAT, which can be regarded as a plug-in module to benefit
broad ABSA works. (iv) Experimental results verify that our frame-
work can achieve consistent and significant improvements on all
seven ABSA tasks in three benchmarks.

2 PROPOSED FRAMEWORK

Figure 2 gives an overview of our unified framework. We consider
building the unified framework based on PLMs as it is pre-trained
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Figure 2: The framework of our proposed SK2.

on a large amount of unlabeled data and shows strong ability in
language representation and language understanding. Without loss
of generality, we choose BERT [6] as the backbone. To effectively
incorporate fine-grained implicit sentiment knowledge, we design
a self-supervised pre-training procedure including the CWP, SPP,
ANP, and SMLM tasks. Based on this, we further explore a sparse
relational graph attention network (SR-GAT) to introduce explicit
aspect-oriented syntax knowledge in the multi-task fine-tuning
phase. The SR-GAT can help model to capture the relationship
between the aspect terms and opinion terms as much as possible.
By combining both worlds of knowledge, our SK2 acquires strong
abilities in sentiment representation and sentiment understanding,
and can better handle the input texts towards all ABSA tasks.

Formally, given an input sentence 𝑠 = {𝑤1,𝑤2, ...,𝑤𝑛} where 𝑛 is
the number of tokens, SK2 produces all aspect terms

{
𝑎1, 𝑎2, ...𝑎𝑞

}
for AE task, all opinion terms

{
𝑜1, 𝑜2, ...𝑜 𝑗

}
for OE task, all opinions

{𝑜1, 𝑜2, ...𝑜𝑘 } based on a specific aspect for AOE task, all aspect
and opinion pairs {(𝑎1, 𝑜1), ...(𝑎𝑧 , 𝑜𝑧)} for AOPE task, and senti-
ment polarities of specific aspects {𝑠1, ...𝑠𝑣} for ASC task, all as-
pect terms and their corresponding sentiments {(𝑎1, 𝑠1), ...(𝑎𝑡 , 𝑠𝑡 )}
for AESC task, and a set of triples {(𝑎1, 𝑜1, 𝑠1), ...(𝑎𝑚, 𝑜𝑚, 𝑠𝑚)} for
ASTE tasks. 𝑎𝑘 =

{
𝑤𝑖 , ...,𝑤 𝑗

}
is the 𝑘-th aspect term in the sen-

tence 𝑠 , which is a single word or a phrase. 𝑜𝑘 means the 𝑘-th
opinion term in the sentence 𝑠 . Likewise, 𝑜𝑘 is a single word or
a phrase. 𝑠𝑘 represents the sentiment polarity of 𝑎𝑘 where 𝑠𝑘 ∈
{Positive, Neutral, Negative}.

Next, we will describe the process of integrating implicit sen-
timent knowledge and explicit syntax knowledge into SK2, the
details of multi-task fine-tuning, and how SK2 effectively handles
all ABSA tasks with the unified model.

2.1 Integrating Implicit Sentiment Knowledge

Despite the power of PLMs in learning generic semantic repre-
sentations, the fine-grained sentiment-aware knowledge is seldom
explicitly exploited in the PLMs, thus it is sub-optimal if we directly
fine-tune the pre-trained language models on the ABSA tasks. To
address the above problem, we design a self-supervised pre-training
procedure to introduce fine-grained implicit sentiment knowledge
for BERT. Concretely, the pre-training procedure includes conjunc-
tive words prediction, sentiment-word polarity prediction, attribute

Table 1: Selected representative conjunctive words.

CWP𝑦𝑐=1
and, also, besides, additional, furthermore, too, still,
moreover, in addition, like wise, as well, what’s more,
not only. . . but also..., as well as, · · ·

CWP𝑦𝑐=0
but, however, whereas, though, nevertheless, instead,
conversely, in contrast, instead of, but unless,
even though, by contrast, on the contrary, · · ·

nouns prediction, and sentiment-oriented masked language model.
In the next, we will introduce them in detail.

2.1.1 Conjunctive Words Prediction (CWP). The CWP task is in-
troduced to teach BERT when the sentiment polarity of a sentence
changes. Considering that the sentiment polarity of a sentence
usually keeps the same or is the opposite after conjunctive words,
we design the novel task to predict the polarity of conjunctive
words. As shown in Figure 1, after the conjunctive word “but”, the
sentiment polarity changes from “negative” to “positive”. Specifi-
cally, we first select one hundred representative conjunctive words
and divide them into two categories as shown in Table 1. The
first category represents a progressive relationship labeled with
𝑦𝑐 = 1, where the sentiment polarity remains unchanged. The
other category indicates a transitional relationship labeled with
𝑦𝑐 = 0, and the sentiment polarity changes after it. Given a to-
ken sequence {𝑤1,𝑤2, ...,𝑤𝑛} where𝑤𝑡 is a conjunctive token, we
feed the sequence into BERT and obtain a representation sequence
{𝐸1, 𝐸2, ..., 𝐸𝑛}. Then the model predicts the polarities of𝑤𝑡 on its
output representation 𝐸𝑡 . The conjunctive score 𝑔𝑐 (𝑡) can be calcu-
lated by a non-linear transformation. Finally, the objective function
of CWP task is formulated as:

L𝑐𝑤𝑝 = − 1
𝑛𝑐

𝑛𝑐∑︁
𝑡=1

𝑦𝑡𝑐𝑙𝑜𝑔(𝑔𝑐 (𝑡)) (1)

where 𝑦𝑡𝑐 is the label of the 𝑡-th conjunctive token and 𝑛𝑐 is the
number of conjunctive tokens in the sequence.

2.1.2 Attribute Nouns Prediction (ANP). SinceABSA tasks aremainly
applied to analyze reviews, e.g., laptop reviews and restaurant re-
views, there exist a large number of attribute nouns. Table 2 shows
the attribute nouns of different-domain reviews that reviewers
have expressed opinions on. Therefore, recognizing attribute nouns
is crucial for extracting aspect terms. To inject attribute nouns
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Table 2: Exhibition of attribute nouns on restaurant domain

and laptop domain. Bold indicates attribute nouns and Un-

derline means common nouns.

Restaurant Domain

Example 1 Pizza and garlic knots are great as well , I order from
them quite often and the delivery is always super quick.

Example 2 Although the tables may be closely situated , food quality
and service overcompensate.

Laptop Domain

Example 1 I love the solid machined aluminum frame, and the key-
board is the best of any laptop I ’ve used.

Example 2 I thought the white Mac computers looked dirty too
quickly where you use themouse and where you place
your hands when typing.

knowledge, we introduce the ANP task. We first employ the TF-IDF
algorithm to identify attribute nouns by comparing the occurrence
frequency of the noun 𝑛 in the domain-specific texts 1 with the
occurrence frequency of the noun 𝑛 in the open domain texts.

After acquiring the attribute nouns, we train BERT with the
ANP task. Given a token sequence {𝑤1,𝑤2, ...,𝑤𝑛}, we mask all
the attribute nouns with [MASK] token. The model is required to
predict the masked tokens based on the rest tokens. Then we feed
the masked sequence into BERT and obtain a representation se-
quence {𝐸1, 𝐸2, ..., 𝐸𝑛}. Finally, given that the 𝑙-th token is masked,
the probability distribution𝑔𝑎 (𝑙) of 𝐸𝑙 over vocabulary can be calcu-
lated by a non-linear transformation. The training objective of ANP
task is to minimize the following negative log-likelihood (NLL):

L𝑎𝑛𝑝 = − 1
𝑛𝑎

𝑛𝑎∑︁
𝑙=1

𝑦𝑙𝑎𝑙𝑜𝑔(𝑔𝑎 (𝑙)) (2)

where 𝑦𝑙𝑎 is the label of the masked 𝑙-th token and 𝑛𝑎 is the number
of masked tokens in the sequence.

2.1.3 Sentiment-word Polarity Prediction (SPP). As described in
ANP task, ABSA tasks are mainly used for reviews which are mostly
emotional sentences containing a great many sentiment words.
Therefore, inspired by Tian et al. [31], we introduce the SPP task to
inject sentiment-word polarity knowledge and provide weak super-
vision for the model to predict sentiment polarities. We first apply
Pointwise Mutual Information (PMI) algorithm [32] for sentiment
knowledge mining. Specifically, we structure a seed collection R
that contains fifty representative sentiment-word seeds and their
corresponding sentiment polarities. The seed collection R is repre-
sented as R = {(𝑥1, 𝑠1), ..., (𝑥𝑚, 𝑠𝑚)} where 𝑥𝑖 is a sentiment-word
seed and 𝑠𝑖 is its sentiment polarity. Then we build a seed-candidate
collection Q = {(𝑥1, 𝑐1), ..., (𝑥𝑛, 𝑐𝑛)} where 𝑐𝑖 is a sentiment-word
candidate, which keeps the same part-of-speech pattern as Turney
[32]. The PMI between seed word 𝑥𝑘 and candidate word 𝑐𝑘 is
calculated as:

PMI(𝑥𝑘 , 𝑐𝑘 ) = 𝑙𝑜𝑔
𝑝 (𝑥𝑘 , 𝑐𝑘 )
𝑝 (𝑥𝑘 )𝑝 (𝑐𝑘 )

(3)

where 𝑝 (𝑥𝑘 , 𝑐𝑘 ) is the co-occurring probability of 𝑥𝑘 and 𝑐𝑘 in all
sentences. The sentiment polarity of 𝑐𝑘 is determined by the differ-
ence between its PMI scores on all positive seeds and all negative

1Domain-specific texts are about laptop and restaurant reviews which have the same
domains with our pre-training corpus.

The computer is good enough for what I need in my office

det nsubj

cop

root

dep prep
pcomp

nsubj nsubj
prep

pobj

poss

The computer is good enough for what I need in my office
nsubj

root

v-Re v-Re
v-Re v-Re v-Re v-Re v-Re v-Re v-Re v-Re

(a) The original dependency tree.

(b) The sparse aspect-oriented dependency tree.

Figure 3: A sparse aspect-oriented dependency tree (b) con-

structed from an original dependency tree (a).

seeds, which is formulated as:

SP(𝑐𝑘 ) =
∑︁

SP(𝑥 𝑗 )=+
PMI(𝑥 𝑗 , 𝑐𝑘 ) −

∑︁
SP(𝑥 𝑗 )=−

PMI(𝑥 𝑗 , 𝑐𝑘 ) (4)

If SP(𝑐𝑘 ) is larger than 0, we regard 𝑐𝑘 as a positive sentiment word
labeled with 𝑦𝑘𝑝 = 1, otherwise 𝑦𝑘𝑝 = 0. Then we feed a sequence
{𝑤1, ..., 𝑐𝑘 , ...,𝑤𝑛} into BERT and acquire a representation sequence
{𝐸1, ..., 𝐸𝑘 , ..., 𝐸𝑛} where 𝑐𝑘 is a sentiment token. The polarity score
𝑔𝑝 (𝑘) of 𝑐𝑘 is predicted by a non-linear transformer on 𝐸𝑘 . The
training objective L𝑠𝑝𝑝 of SPP task is defined as:

L𝑠𝑝𝑝 = − 1
𝑛𝑚

𝑛𝑚∑︁
𝑘=1

𝑦𝑘𝑝𝑙𝑜𝑔(𝑔𝑝 (𝑘)) (5)

where 𝑛𝑚 is the number of sentiment tokens in the sequence.

2.1.4 Sentiment-oriented Masked Language Modeling (SMLM). As
one of the common self-supervised tasks in PLMs, token-level
masked language modeling is usually utilized to guide the model
to learn semantic features of word sequences with the bidirectional
context. To capture sentiment representations, we introduce the
SMLM task, which can guide the model to learn sentiment features
of input sequences. Specifically, we replace sentiment tokens which
can be acquired as described in the SPP task with [MASK] token. If
the number of the masked attribute tokens and sentiment tokens
is less than 15% of the input sequence, we randomly select other
tokens to mask. SMLM task is modeled as a multi-classification
problem for each masked token and the objective L𝑠𝑚𝑙𝑚 is the
same with Formula 2.

2.1.5 Joint Learning. We take a multi-task learning manner to
optimize the model, and the final loss in self-supervised pre-training
procedure is the sum of losses from the CWP, ANP, SPP, and SMLM
tasks. The final objective function is formulated as:

L𝑝𝑡 = L𝑐𝑤𝑝 + L𝑎𝑛𝑝 + L𝑠𝑝𝑝 + L𝑠𝑚𝑙𝑚 (6)

Based on the self-supervised pre-training procedure, SK2 is incor-
porated implicit sentiment knowledge and becomes more sentiment
awareness, which is beneficial for aspect term extraction, opinion
term extraction, and sentiment polarity prediction.

2.2 Integrating Explicit Syntax Knowledge

ABSA tasks rely more on aspect-related syntax knowledge, where
the syntax tree roots on an aspect term and entails direct interac-
tions between aspect and opinion terms. The aspect-related syntax
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can prompt the neural model to explicitly capture the sentiment to-
wards the aspect. Inspired by this point, we further explore a sparse
relational graph attention network (SR-GAT) to incorporate explicit
aspect-oriented syntax knowledge for the subsequent ABSA tasks,
as illustrated in the right part of Figure 2.

The traditional dependency tree contains abundant grammar in-
formation and many are usually not rooted at a target aspect term,
as indicated in Figure 3. Nevertheless, the focus of ABSA tasks
is the target aspect terms instead of the root of dependency tree.
Moreover, in the dependency tree, some dependency relationships
are not essential and may introduce noise since the key of ABSA
tasks is the dependency relations between the aspect terms and
the opinion terms. Therefore, we propose a sparse aspect-oriented
dependency tree by reshaping and pruning the original dependency
tree. Concretely, inspired by Wang et al. [34], we first reshape the
dependency tree into an aspect-oriented dependency tree. If the
sentence with multiple aspect terms, we construct a unique tree for
each target separately. Different from Wang et al. [34], considering
that some dependency relationships are not essential, we prune the
tree to reduce the impact of other unrelated tokens and noisy rela-
tions. Specifically, we acquire the dependency relations that are di-
rectly connected to the target aspect and only retain six dependency
relations {amod, dobj, neg, nsubj, rcmd, xcomp}. According
to the definition of dependency relationships in De Marneffe and
Manning [5], the selected six relations can grasp the essential clues
to extract opinion terms for the specific aspect term. For example,
as shown in Figure 3(b) , the “nsubj” relation between “computer”
and “good” provides effective clues for ABSA tasks, but the “det”
relation between “computer” and “the” offers minimal information
in Figure 3(a). Next, we treat other dependency relations as virtual
relations (v-Re) from the target aspect to each corresponding node.

Based on this, we explore a sparse relational graph attention
network (SR-GAT) to represent the sparse aspect-oriented depen-
dency tree. In SR-GAT G, each node denotes peer token of the input
sequence, edge represents the dependency relation between two
nodes. The neighborhood nodes of node 𝑛𝑖 areN𝑖 . We first initialize
node representations with the summation of the token embedding
and POS embedding. Formally, the 𝑖-th node representation of the
(𝑘 + 1)-th layer can be computed as:

ℎ𝑘+1𝑖 = | |𝑀𝑚=1

∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗𝑘𝑚𝑊 𝑘
𝑚ℎ

𝑘
𝑗

𝑔𝑘𝑚𝑖 𝑗 = 𝜎 (relu(𝑟𝑘𝑚𝑖 𝑗 𝑊𝑚1 + 𝑏𝑚1)𝑊𝑚2 + 𝑏𝑚2)

𝛼𝑖 𝑗𝑘𝑚 =
exp(𝑔𝑘𝑚

𝑖 𝑗
)∑N𝑖

𝑗=1 exp(𝑔
𝑘𝑚
𝑖 𝑗

)

(7)

where 𝑀 is the number of relational heads. ℎ𝑘
𝑗
is the representa-

tion of node 𝑗 in the 𝑘-th layer.𝑊𝑚1,𝑊𝑚2,𝑊 𝑘
𝑚 , 𝑏𝑚1 and 𝑏𝑚2 are

trainable parameters. 𝑟𝑘𝑚
𝑖 𝑗

is the dependency relationship embed-
ding between node 𝑖 and 𝑗 in the𝑚-th head of the 𝑘-th layer. The
above aggregation operation is performed 𝐾 times and the final
dependency relationship features of the𝑚 head is 𝑅𝐾𝑚 ∈ R𝑛×𝑛×𝑑𝑝
where 𝑛 is the length of input sequence and 𝑑𝑝 is the dimension of
dependency relationship embeddings.

Since dependency relationship features contain sufficient syntax
information towards the target aspect, we propose to incorporate

these syntax knowledge into Transformer. Concretely, Transformer
architecture consists of a composition of Transformer layers [33].
Each Transformer layer has a self-attention module and a position-
wise feed-forward network (FFN). The input of each layer is 𝐻 ∈
R𝑛×𝑑 where 𝑑 is the hidden dimension. 𝐻 is then projected into
𝑄 , 𝐾 , and 𝑉 through three matrices𝑊𝑄 ∈ R𝑑×𝑑𝐾 ,𝑊𝐾 ∈ R𝑑×𝑑𝐾 ,
and𝑊𝑉 ∈ R𝑑×𝑑𝑉 . To incorporate syntax knowledge, we compute
an average of the dot-products of the dependency relationship
features and a learning parameters in all heads. Then we introduce
the dependency features via a bias term to the attention module,
and revise the formulation of the self-attention mechanism as:

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(𝐻𝑊𝑄 ) (𝐻𝑊𝐾 )𝑇√︁

𝑑𝐾

+ 𝑆)𝑉

𝑆 =
1
𝑀

𝑀∑︁
𝑚=1

𝑅𝐾𝑚𝑊𝑇
𝑆

(8)

where𝑊𝑆 ∈ R𝑑𝑝 is a learning parameter.
Until now, our BERT has possessed sentiment knowledge and

syntax knowledge through the proposed self-supervised pre-training
procedure and incorporating dependency features from the SR-GAT.
With the help of both procedures, BERT has strong abilities in sen-
timent representation and sentiment understanding.

2.3 Multi-task Fine-tuning

Based on integrating implicit sentiment knowledge and explicit
syntax knowledge, SK2 can effectively handle all ABSA tasks in a
unified framework. In the next, we will describe the multi-task fine-
tuning process of SK2 in detail, including aspect term extraction,
opinion term extraction, and sentiment polarity prediction.

2.3.1 Extract Aspect Terms. To extract aspects, we construct the fol-
lowing input for BERT: [CLS] Sentence [SEP] Aspect [SEP],
where Aspect is the word “aspect”, and [CLS] and [SEP] are spe-
cial tokens for classification and separating sentences. Meanwhile,
we feed the sparse aspect-oriented dependency tree into SR-GAT2
and integrate syntax features into BERT as described in Equation
8. Then BERT outputs the final representations ℎ̃𝐾𝑎 of input. In-
stead of using a sequence tagging strategy, we apply a span-based
scheme [12] to determine aspect terms, which predicts the start
and end positions of targets under the supervision of target span in
the input. Next, we apply two non-linear transformations based on
ℎ̃𝐾𝑎 to calculate the start position score 𝑔𝑖𝑎,𝑠 and end position score
𝑔𝑖𝑎,𝑒 of the the 𝑖-th aspect term. Finally, we extract all aspect terms
from the input by minimizing the negative log-likelihood (NLL):

L𝑎 = −
𝑞∑︁
𝑖=1

𝑦𝑖𝑎,𝑠𝑙𝑜𝑔𝑔
𝑖
𝑎,𝑠 −

𝑞∑︁
𝑖=1

𝑦𝑖𝑎,𝑒𝑙𝑜𝑔𝑔
𝑖
𝑎,𝑒 (9)

where 𝑦𝑖𝑎,𝑠 and 𝑦𝑖𝑎,𝑒 are the labels of start and end positions of the
𝑖-th aspect term, 𝑞 is the number of aspect terms in the input.

2.3.2 Extract Opinion Terms. To extract opinion terms, we first
feed the sequence [CLS] Sentence [SEP] Aspect Label [SEP]
into BERT, and meanwhile feed the sentence into SR-GAT. In the
training process, we directly use the label of the aspect term as
Aspect Label. In the inference process, we use the predicted aspect
2We utilize the original dependency tree to model graph when aspects are not labeled.
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Table 3: Statistics of the three datasets. #s denotes the number of sentences. #a and #o denote the number of aspect terms and

opinion terms. #p means the number of (aspect, opinion) pairs.

Dataset
14res 14lap 15res 16res

#s #a #o #p #s #a #o #p #s #a #o #p #s #a #o #p

D17 [36]
train 3044 3699 3484 – 3048 2373 2504 – 1315 1199 1210 – – – – –
test 800 1134 1008 – 800 654 674 – 685 542 510 – – – – –

D19 [8]
train 1627 2643 – – 1158 1634 – – 754 1076 – – 1079 1512 – –
test 500 865 – – 343 482 – – 325 436 – – 329 457 – –

D20𝑎 [24]
train 1300 – – 2145 920 – – 1265 593 - - 923 842 – – 1289
test 496 – – 862 339 – – 490 318 – – 455 320 – – 465

D20𝑏 [44]
train 1266 – – 2338 906 – – 1460 605 – – 1013 857 – – 1394
test 492 – – 994 328 – – 543 322 – – 485 326 – – 514

terms as Aspect Label. Then we obtain the final representation ℎ̃𝐾𝑜
from BERT that was enhanced by sentiment and syntax information.
We feed ℎ̃𝐾𝑜 into a non-linear transformation layer, and acquire the
start position score 𝑔𝑖𝑜,𝑠 and the end position score 𝑔𝑖𝑜,𝑒 of the 𝑖-th
opinion term, respectively. The objective function for extracting
opinion terms is formulated as:

L𝑜 = −
𝑧∑︁
𝑖=1

𝑦𝑖𝑜,𝑠𝑙𝑜𝑔𝑔
𝑖
𝑜,𝑠 −

𝑧∑︁
𝑖=1

𝑦𝑖𝑜,𝑒𝑙𝑜𝑔𝑔
𝑖
𝑜,𝑒 (10)

where 𝑦𝑖𝑜,𝑠 and 𝑦𝑖𝑜,𝑒 are the labels of start and end positions of the
𝑖-th opinion term, 𝑧 is the number of opinion terms in the input.

2.3.3 Predict Sentiment Polarity. To predict sentiment polarity of
specific aspect term, we first format the input sequence as [CLS]
Sentence [SEP] Aspect Label [SEP]. Then we feed the sen-
tence and the dependency tree into SR-GAT and obtain the output
representations ℎ̃𝐾𝑠 from BERT. Since [CLS] token contains the
semantic interaction information of the input, we take [CLS] rep-
resentation ℎ̃𝐾

𝑠,0 for predicting the sentiment polarity. Specifically,
the output probability of aspect-based sentiment polarity 𝑔𝑠 is com-
puted by a non-linear transformation on ℎ̃𝐾

𝑠,0. Finally, the objective
function for the sentiment prediction is:

L𝑠 = −(𝑦𝑠𝑙𝑜𝑔(𝑔𝑠 ) − (1 − 𝑦𝑠 )𝑙𝑜𝑔(1 − 𝑔𝑠 )) (11)

2.3.4 Learning Objective. We jointly optimize aspect terms extrac-
tion, opinion terms extraction, and sentiment polarity prediction
components. The final objective function is formulated as:

L𝑓 𝑡 = L𝑎 + L𝑜 + L𝑠 (12)

2.4 Model Inference

After the above multi-task fine-tuning process, we can test our
unified model on all ABSA tasks including AE, OE, ASC, AESC,
AOE, AOPE, and ASTE.

It is worth nothing that our fine-tuning process can be performed
in an end-to-end manner since the ground truth of all aspect labels
is available. During the inference process, we utilize the original
dependency tree to model the graph for AE and OE tasks because
all aspect labels are unknown. For OE task, we construct the input
sequence of BERT as {[CLS] Sentence [SEP] Opinion [SEP]},
instead of {[CLS] Sentence [SEP] Aspect Label [SEP]}. For
ASC task, we directly use the given aspect label to construct the
input sequence [CLS] Sentence [SEP] Aspect Label [SEP] for
BERT. For other tasks, we first predict the aspect label with BERT,

then feed the sequence [CLS] Sentence [SEP] Aspect Label
[SEP] into BERT where Aspect Label is the predicted label.

3 EXPERIMENTS

Datasets and Evaluation Metrics. We evaluate our model on three
popular benchmarks from the Semeval Challenges [26, 27]. The
first dataset only contains the aspect labels which are annotated by
Wang et al. [36]. The second dataset is annotated with aspect terms
and their corresponding opinion terms by Fan et al. [8]. The third
dataset is from Peng et al. [24] that contains aspect labels, their
corresponding opinion labels, and sentiment polarities of specific
aspect terms. We further introduce the refined version of the third
dataset proposed by Xu et al. [44] which removes the triples with
inaccurate sentiments and labels the missing triples. These datasets
are about Laptop and Restaurant reviews. To distinguish datasets
above, we name these benchmarks according to their published
years, i.e. D17,D19, D20𝑎 and D20𝑏 . We present the statistics of
the three datasets in Table 3. Following previous studies [8, 24], we
use metrics to the corresponding ABSA tasks and datasets. These
metrics include the precision (P), recall (R), and macro-f1 (F1) scores.

Implementation Details. We run all experiments on the NVIDIA
Tesla-V100. Following previous works [21], we utilize English un-
cased BERTbase (110M) as the backbone for AE, SC, and ASC tasks,
and apply English uncased BERTlarge (350M) for other four tasks.
We select Biaffine Parser [7] for dependency parsing in our model.
In the SR-GAT, the dimension of the dependency relation embed-
ding 𝑑𝑝 is set to 300. The dimension of POS embedding is set to 300.
We vary the layer of SR-GAT (𝐾 ) in {1, 2, 3, 4}, and find that 𝐾 = 3
is the best choice. We train our model using Adam optimizer [15].
The initial learning rate is 2𝑒−5 and keeps decaying during training.
We set dropout as 0.1 and batch size as 16.

3.1 Competitive Baselines

To thoroughly and clearly evaluate our framework, we separate all
competitive baselines into three groups according to the datasets.

The baselines in the first class are conducted on D17 [36], which
are proposed for AE, OE, and ASC tasks. SPAN-BERT [12] is a
span-based extract-then-classify framework, where BERT is the
backbone network. IMN-BERT [10] is an interactive multi-task
learning network that jointly learns aspect terms and aspect-level
sentiment polarities. RACL-BERT [4] is a relation-aware collab-
orative learning framework, which applies relation propagation
techniques to analyze fine-grained sentiments. SKEP [31] conducts
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Table 4: Comparison F1 scores for AE, OE, and ASC tasks on the D17 dataset. The baseline results are directly taken from Mao

et al. [21] and Yan et al. [45]. ‡means BERTlarge as backbone for a fair comparison. We highlight the best results in bold.

14res 14lap 15res
AE-F1 OE-F1 ASC-F1 AE-F1 OE-F1 ASC-F1 AE-F1 OE-F1 ASC-F1

SPAN-BERT 86.71 – 71.75 82.34 – 62.50 74.63 – 50.28
IMN-BERT 84.06 85.10 75.67 77.55 81.00 75.56 69.90 73.29 70.10
RACL-BERT 86.38 87.18 81.61 81.79 79.72 73.91 73.99 76.00 74.91
Dual-MRC 86.60 – 82.04 82.51 – 75.97 75.08 – 73.59

Gene-Unified 87.07 87.29 75.56 83.52 77.86 76.76 75.48 76.49 73.91
SK2 88.82 89.91 87.64 86.17 81.04 81.66 79.75 79.43 80.72

SKEP/SK2‡ – – 91.09/91.60 – – 82.57/83.32 – – 83.00/82.19

Table 5: Comparison F1 scores for AOE task on the D19 dataset. Baseline results are directly taken from Mao et al. [21] and Yan

et al. [45]. Numbers in bold indicate the best results.

14res 14lap 15res 16res
P R F1 P R F1 P R F1 P R F1

IOG 82.83 78.25 80.23 73.43 68.74 70.99 72.19 71.76 71.91 84.36 79.08 81.60
LOTN 84.00 80.52 82.21 77.08 67.62 72.02 76.61 70.29 73.29 86.57 80.89 83.62

Dual-MRC 89.79 78.43 83.73 78.21 81.66 79.90 77.19 71.98 74.50 86.07 80.77 83.33
Gene-Unified 86.01 84.76 85.38 83.11 78.13 80.55 80.12 80.93 80.52 89.22 86.67 87.92

SK2 87.33 87.93 88.54 83.32 82.63 84.97 75.42 81.68 83.34 87.17 87.75 88.46

sentiment masking and three sentiment knowledge prediction ob-
jectives to pre-training for ASC task3. Dual-MRC [21] is a joint
training method for a series of ABSA tasks, which converts ABSA
tasks into two machine reading comprehension problems. Unified-
Gene [45] exploits the pre-training sequence-to-sequence model
to solve all ABSA subtasks in an end-to-end framework.

The second group of baselines is implemented in D19 [8], which
is proposed for the AOE task. IOG [8] constructs an encoder to
learn aspect-oriented sentence representations and pass them to
the decoder for labeling opinion terms, which proposes the AOE
task. LOTN [40] incorporates position embedding of aspect terms,
then uses a BiLSTM to extract the opinion terms.

The baselines in the third group are implemented on D20𝑎 [24]
and D20𝑏 [44] for AESC, AOPE, and ASTE tasks. CMLA [36] struc-
tures coupled attentions to exploit the correlations among sequence
tokens for extracting aspect and opinion terms. Li-unified-R [24]
is a modified model variant of Li-unified [16]. Peng-two-stage [24]
is a two-stage framework for ASTE task. The first stage predicts as-
pect terms, opinion terms, and sentiment polarities, and the second
stage pairs up the predicted aspect and opinion terms. PASTE [22]
designs a tagging-free method based on the pre-trained BERT with
the review corpus. Joint-ABSA [14] constructs a dual-encoder
framework that can capture the difference between the subtasks.
Span-ASTE [43] designs a dual-channel span pruning strategy
by incorporating supervision from the aspect term extraction and
opinion term extraction tasks.

3.2 Main Evaluations

Evaluations on Three Fundamental Tasks. Table 4 reports the
evaluation results of AE, OE, and ASC tasks on D17 [36]. From
the results, we can observe that 1) our framework gains significant

3Since we can only acquire the pre-trained SKEP based on Ernielarge , we also evaluate
SK2 on BERTlarge at the ASC task for a fair comparison.

improvement over all baselines. Specifically, on AE, OE, and ASC
tasks, our method achieves 2.89%, 1.87%, and 5.43% average absolute
improvements on F1 score, respectively; 2) ASC, as a more useful
task in ABSA, gets the most significant improvement. This can
be attributed to the general sentiment and aspect-oriented syntax
knowledge acquired in our model to facilitate precise interactions
between aspect and opinion terms for polarities. 3) SK2 outper-
forms SKEP model in most scenarios. This demonstrates that the
superiority of our introduced knowledge, that is, though utilizing
the same sentiment masking with SKEP, our model also considers
the conjunctive words and attribute nouns in the post-training
procedure and syntax information in the fine-tuning phase.

Evaluations on Aspect & Opinion Extraction Tasks. To further
prove the effectiveness of our framework, we also conduct exper-
iments on the AOE task in Table 5. It is shown that our method
acquires 2.73% average improvements on D19 [8], which demon-
strates the effectiveness of our proposed SK2 on the AOE task.
Coupled with the opinion extraction task (i.e., OE task) in Table 4,
it is verified that our integrated knowledge can improve the model
to capture the interrelatedness between aspect and opinion terms
and thus boost the extraction performance.

Evaluations on More Compound Tasks. We show the results of
AESC, AOPE, and ASTE tasks on D20𝑎 [24] and D20𝑏 [44] in Table
6. It demonstrates that: First, our span-based approach performs
much better than the unified tagging schema, e.g., Li-unified-R and
Peng-two-stage, since determining the start and end positions is
easier than labeling each token in the input. Second, on extracting
(aspect term, opinion term) task, i.e., the AOPE task, our method
achieves significant improvements compared with all baselines,
which proves the power of our incorporated explicit syntax knowl-
edge for pairing the aspect terms and opinion terms. Third, in the
hardest ASTE task, SK2 achieves 2.41% and 1.53% average absolute
improvements on the F1 at D20𝑎 and D20𝑏 datasets respectively,
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Table 6: Comparison F1 scores for AESC, AOPE, and ASTE tasks on the D20𝑎 and D20𝑏 datasets. Baseline results are directly

taken from published papers [14, 21, 22, 43, 45].
†
denotes the results are based on D20𝑏 dataset and other results are from D20𝑎

dataset. Numbers in bold indicate the best results.

14res 14lap 15res 16res
P R F1 P R F1 P R F1 P R F1

AESC

CMLA 67.80 73.69 70.62 54.70 59.20 56.90 49.90 58.00 53.60 58.90 63.60 61.20
Li-unified-R 73.15 74.44 73.79 66.28 60.71 63.38 64.95 64.95 64.95 66.33 74.55 70.20

Peng-two-stage 74.41 73.97 74.19 63.15 61.55 62.34 67.65 64.02 65.79 71.18 72.30 71.73
Dual-MRC 76.84 76.31 76.57 67.45 61.96 64.59 66.84 63.52 65.14 69.18 72.59 70.84

Gene-Unified – – 78.47 – – 68.17 – – 69.95 – – 75.69
SK2 76.24 81.72 78.72 67.91 70.84 69.42 70.84 71.93 73.30 76.61 78.98 77.78

AOPE

CMLA 45.17 53.42 48.95 42.10 46.30 44.10 42.70 46.70 44.60 52.50 47.90 50.00
Li-unified-R 44.37 73.67 55.34 52.29 52.94 52.56 52.75 61.75 56.85 46.11 64.55 53.75

Peng-two-stage 47.76 68.10 56.10 50.00 58.47 53.85 49.22 65.70 56.23 52.35 70.50 60.04
Dual-MRC 76.23 73.67 74.93 65.43 61.43 63.37 72.43 58.90 64.97 77.06 74.41 75.71

Gene-Unified – – 77.68 – – 66.11 – – 67.98 – – 77.38
SK2 76.57 79.88 78.19 67.02 65.24 68.12 69.28 73.29 72.05 76.94 79.07 79.89

ASTE

CMLA 40.11 46.63 43.12 31.40 34.60 32.90 34.40 37.60 35.90 43.60 39.80 41.60
Li-unified-R 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51

Peng-two-stage 44.18 62.99 51.89 40.40 47.24 43.50 40.97 54.68 46.79 46.76 62.97 53.62
Dual-MRC 71.55 69.14 70.32 57.39 53.88 55.58 63.78 51.87 57.21 68.60 66.24 67.40

Gene-Unified – – 72.46 – – 57.59 – – 60.11 – – 69.98
SK2 71.40 74.15 73.32 57.70 58.84 60.14 61.14 55.45 64.32 68.85 68.68 72.03

PASTE† 68.70 63.80 66.10 59.70 55.30 57.40 63.60 59.80 61.60 68.00 67.70 67.80
Joint-ABSA† 67.95 71.23 69.55 62.12 56.38 59.11 58.55 60.00 59.27 70.65 70.23 70.44
Span-ASTE† 72.89 70.89 71.85 63.44 55.84 59.38 62.18 64.45 63.27 69.45 71.17 70.26

SK2† 71.48 75.15 73.27 59.12 62.06 60.56 62.93 67.22 65.00 70.74 74.85 72.19

Table 7: Ablation study on ASTE task at the D20𝑎 dataset.

14res 14lap 15res 16res
SK2 73.32 60.14 64.32 72.03
w/o CWP 71.76 57.47 61.81 71.45
w/o SPP 71.18 57.07 61.60 69.92
w/o ANP-SMLM 71.84 58.21 61.44 70.19
w/o SR-GAT 73.06 59.75 63.66 71.49

demonstrating the effectiveness of implicit sentiment knowledge
and explicit syntax knowledge in our framework. Meanwhile, our
SK2 outperforms PASTE that is pre-trained with MLM and NSP
tasks, which proves the superiority of our introduced knowledge.
Thereby, superior performance on all these complicated compound
tasks verifies the strong power of our model on ABSA tasks.

In summary, our SK2 is competent in all 7 ABSA tasks on bench-
marks and outperforms its competitive baselines. This is achieved
by our general and advanced knowledge integration techniques.

3.3 Model Analysis

Ablation Study. To investigate the impact of incorporated im-
plicit sentiment knowledge and explicit syntax knowledge, we con-
duct a comprehensive ablation study on the ASTE task in Table 7.
To verify the effectiveness of our implicit sentiment knowledge, we
remove each self-supervised task individually from our framework
and denote the framework as “w/o 𝛤 ”, where 𝛤 includes CWP, SPP,
ANP, and SMLM tasks. It is observed that each self-supervised task
is useful as removing each of them causes notable performance
drop. Particularly, the ANP and SPP tasks play important roles in
improving ABSA tasks. The reason might be that the ANP task can
help the model to understand aspect terms and the SPP task can

provide weak supervision for our framework to predict sentiment
polarities. To demonstrate the power of explicit syntax knowledge,
we further remove the SR-GAT. Experimental results verify the
effectiveness of the explicit aspect-oriented syntax knowledge.

Table 8: Comparison of different trees.

14res 14lap 15res 16res

AESC
Tree𝑂 76.26 65.98 72.09 73.02
Tree𝑅 78.33 68.43 70.34 76.23
Tree𝑆𝑅 78.72 69.42 73.30 77.78

AOPE
Tree𝑂 75.34 66.61 69.28 75.40
Tree𝑅 77.44 68.54 71.24 76.14
Tree𝑆𝑅 78.19 68.12 72.05 79.89

ASTE
Tree𝑂 70.98 58.26 62.63 66.89
Tree𝑅 73.54 57.48 63.56 69.52
Tree𝑆𝑅 73.32 60.14 64.32 72.03

Comparison of different trees. We compare our spare aspect-
oriented dependency tree (Tree𝑆𝑅 ) with other dependency trees,
namely Tree𝑂 and Tree𝑅 . The Tree𝑂 is the original dependency
tree of input and Tree𝑅 is the aspect-oriented dependency tree
from Wang et al. [34]. As we can see in Table 8, after replacing
our tree by Tree𝑂 or Tree𝑅 , the performance of SK2 drops, which
demonstrates the superiority of our spare aspect-oriented depen-
dency tree. The main reason may be that the focus of ABSA tasks
is the aspect terms instead of the root of dependency tree and some
unessential dependency relationships in Tree𝑂 and Tree𝑅 confuse
model to extract triples .

Effects of the number of SR-GAT layers. We further study how
the number of SR-GAT layers influences the performance of our
framework. Figure 4 shows how the performance of our framework
changes with respect to the different number of SR-GAT layers on
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Figure 4: Effects of the number of SR-GAT layers on D20𝑎 .

D20𝑎 dataset [24] at ASTE task. We can observe that the perfor-
mance first increases monotonically until the number of SR-GAT
layers reaches 3, and then drops as the number of SR-GAT layers
increases. One potential reason is that our aspect-oriented syntax
tree has already captured the aspect-opinion in short paths over the
tree and three layers of GAT are adequate to model the information.

4 RELATEDWORKS

This section groups ABSA tasks into three classes according to their
targets, i.e., terms extraction tasks, sentiment prediction tasks, and
compound tasks. In each class, wewill also focus on the task-specific
knowledge integration methods for boosting their performance.

Terms Extraction Tasks. (1) AE focuses on extracting all exist-
ing aspect terms from a sentence, which is first proposed by Hu
and Liu [11]. Some existing studies treat AE as a sequence tagging
task [17, 35, 41], and focus on introducing extra knowledge for bet-
ter aspect extraction. Xu et al. [41] incorporate domain embeddings
and general embeddings into a simple CNNmodel for acquiring bet-
ter representation. Li and Lam [17] design an aspect memory and an
opinion memory as extra knowledge to extract aspect terms. How-
ever, these works neglect to incorporate the knowledge of attribute
nouns that reviewers have expressed opinions on. (2) OE aims to
extract all opinion terms from the inputs. Wang et al. [36] propose
a multilayer attention network to extract opinion terms where each
layer consists of a couple of attentions with tensor operators. Li [16]
utilize two stacked recurrent neural networks to identify the opin-
ion terms. In most works, the OE task occurs simultaneously with
the AE task or as an auxiliary task to improve other ABSA tasks.
(3) AOE extracts the opinion terms based on specific aspect terms,
which is proposed by Fan et al. [8]. The main challenge of the AOE
task is to establish the relations between aspect terms and opin-
ion terms. Wu et al. [39] design a grid tagging scheme to capture
the relations, and Ying et al. [47] design two tailor-made opinion
transmission mechanisms to grasp opinion term clues. Compared
to our framework, these researches usually fail to integrate syntax
knowledge for acquiring aspect-related opinion terms. (4) AOPE
devotes to extracting the aspect terms and their opinion terms as
pairs proposed by Zhao et al. [48]. Some works introduce syntax
knowledge for extracting and pairing terms. Wu et al. [38] propose
an edge-enhanced syntactic graph convolutional network for en-
hancing the extraction and pairing of aspect and opinion terms.
Wu et al. [37] build a syntax-fusion encoder to encode syntax fea-
tures for improving pair-wise aspect and opinion terms extraction.
But, considering a sentence’s complexity, these syntax-enhanced

methods do not distinguish important and negligible syntax, which
might confuse models to extract and pair terms.

Sentiment Prediction Tasks. ASC predicts aspect-based sentiment
polarities in a sentence. Some attention-based works [18, 19] have
been explored to calculate the relevancy between the aspect terms
and other contextual tokens. Recently, syntax knowledge has been
introduced to enhance the ASC task. Chen et al. [3] construct a
dependency graph and a latent graph to grasp syntax information.
Wang et al. [34] propose an aspect-oriented dependency tree to en-
hance model to focus onmore aspect-related tokens. Despite consid-
ering syntax, these works fail to incorporate sentiment knowledge
for understanding the polarities of sentiment words.

Compound Tasks. (1) AESC aims to detect the aspect terms and
predict their corresponding sentiment polarities in inputs. Tradi-
tionally, this task is decoupled into AE and ASC tasks. However,
rather than using separate models for each task, most studies ad-
dress this task by jointly extracting the aspect terms and predicting
sentiment polarity in an end-to-end way. Li et al. [16] propose a
unified model with maintaining sentiment components. Hu et al.
[12] introduce a span-based method, where multiple aspect terms
are extracted under the supervision of target span boundaries, and
their sentiment polarities are classified using their span representa-
tions. Phan and Ogunbona [25] consider the grammatical aspect of
the sentence and employ the self-attention mechanism for syntacti-
cal learning. Compared with our framework, it can only process
the AESC task and is a two-stage method that firstly extracts aspect
terms and then predicts their sentiment polarities. (2) ASTE focuses
on discovering triples including aspect terms, their sentiment po-
larities, and opinion terms. Peng et al. [24] is the first to study this
task by proposing a two-stage framework. To enhance efficiency,
Xu et al. [44] design an end2end model with a position-aware tag-
ging scheme to jointly extract the triples. Xu et al. [43] design a
dual-channel span pruning strategy for ASTE task. Mao et al. [21]
and Yan et al. [45] construct a unified framework to address all
ABSA tasks. Despite the diversity, sentiment-oriented knowledge
is seldom exploited but is critical for ABSA tasks.

5 CONCLUSION

This paper considers sentiment and syntax knowledge, which is
the key to addressing ABSA tasks. We propose a new unified frame-
work that integrates both implicit sentiment knowledge and ex-
plicit syntax knowledge to handle all ABSA tasks. To introduce
sentiment knowledge, we devise four self-supervised objectives in
terms of sentiment words, attribute nouns, sentiment polarity, and
conjunctive words. Besides, we construct an sparse aspect-rooted
dependency tree and apply a graph attention network to encode the
tree structure, so as to incorporate aspect-oriented syntax knowl-
edge into the framework. We conduct experiments on three public
datasets and evaluation results indicate that our proposed frame-
work outputs all compared baselines.
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